en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Une présentation statistique des forêts d'arbres de décision, orientée vers les applications, avec une initiation au langage de programmation R. ©Electre 2025
Les forêts aléatoires avec R
Les forêts aléatoires sont une méthode d'apprentissage statistique qui fait aujourd'hui partie des outils centraux des statisticiens ou autres data scientists. Introduites par Leo Breiman en 2001, elles sont depuis intensément utilisées dans de nombreux domaines d'application (comme l'écologie, la prévision de la pollution ou encore la santé), du fait des très bonnes performances de l'algorithme en prédiction, mais aussi de leur généralité, n'imposant que très peu de restrictions sur la nature des données. En effet, elles sont adaptées aussi bien à des problèmes de classification supervisée qu'à des problèmes de régression. De plus, elles permettent de prendre en compte un mélange de variables explicatives qualitatives et quantitatives. Enfin, elles sont capables de traiter des données standards pour lesquelles le nombre d'observations est plus élevé que le nombre de variables, mais se comportent également très bien dans le cas de données de grande dimension où le nombre de variables est très important.
Ce livre est une présentation statistique des forêts aléatoires, orientée vers les applications. Il s'adresse donc en premier lieu aux étudiants de filières comportant des enseignements de la statistique mais aussi bien entendu aux praticiens du domaine. Pour fixer les idées sur le plan pédagogique, un niveau de licence scientifique est tout à fait suffisant pour tirer profit des concepts, méthodes et outils introduits. Sur le plan informatique, les prérequis sont modestes mais une initiation au langage R est utile pour s'approprier pleinement l'usage des forêts aléatoires.
Paru le : 07/03/2019
Thématique : Statistiques
Auteur(s) : Auteur : Robin Genuer Auteur : Jean-Michel Poggi
Éditeur(s) :
Presses universitaires de Rennes
Collection(s) : Pratique de la statistique
Série(s) : Non précisé.
ISBN : 978-2-7535-7710-7
EAN13 : 9782753577107
Reliure : Broché
Pages : 106
Hauteur: 24.0 cm / Largeur 16.0 cm
Épaisseur: 1.0 cm
Poids: 401 g