en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Ce manuel, consacré à l'algèbre linéaire, constitue un outil de base pour les candidats aux concours du CAPES ou de l'agrégation de mathématiques. Espace vectoriel, rang, système linéaire sont présentés sous la forme théorique et algorithmique. ©Electre 2025
Cet ouvrage traite de l'algèbre linéaire en 280 pages et 160 exercices. Il s'adresse aux étudiants en licence de mathématiques (chapitres 1, 2, 3, 5) et aux étudiants de master de mathématiques (chapitres 3, 4, 5). Parcourant le cycle complet des études en mathématiques, il se présente donc comme l'outil de base du candidat aux concours du CAPES ou de l'Agrégation.
Espace vectoriel, déterminant, rang, système linéaire sont présentés sous la forme théorique et algorithmique : les opérations élémentaires sur lignes et colonnes d'une matrice y jouent un rôle important.
Le chapitre Algèbre des endomorphismes, groupe linéaire étudie de façon déjà approfondie l'aspect groupe et générateurs avec les transvections, le groupe dérivé et les sous-groupes distingués.
Sous le titre Polynôme minimal et polynôme caractéristique, on énonce un théorème de Cayley-Hamilton, version forte qui prépare les outils théoriques et algorithmiques du chapitre suivant. La Réduction d'un endomorphisme est présentée de façon élémentaire (i.e. sans utiliser la théorie des modules). Elle conduit à la notion d'invariants de similitude d'un endomorphisme, avec comme conséquence la réduction de Jordan lorsque le corps de base est algébriquement clos.
Vecteurs propres, diagonalisation est la partie de l'Algèbre linéaire la mieux connue. On y montre la décomposition canonique en diagonalisable plus nilpotent, on y approfondit la recherche numérique de vecteurs propres et, enfin, on y aborde la belle théorie des endomorphismes semi-simples.
Les exercices qui closent chaque chapitre abordent des sujets qui intéresseront le lecteur curieux et aiguiseront sa sagacité ; ils permettent d'aboutir, avec des moyens «élémentaires», à des résultats réputés délicats. Citons les célèbres théorèmes de Burnside sur les sous-groupes d'exposant fini de GL(n,C) ou sur l'algèbre engendrée par un sous-groupe irréductible de GL(n,C), le théorème de Schur ainsi que le fameux théorème de Schur et Jordan.
Paru le : 24/01/2012
Thématique : Mathématiques 1er Cycle
Auteur(s) : Auteur : Jean Fresnel
Éditeur(s) :
Hermann
Collection(s) : Formation des enseignants et formation continue
Série(s) : Non précisé.
ISBN : 978-2-7056-8270-5
EAN13 : 9782705682705
Reliure : Broché
Pages : 292
Hauteur: 24.0 cm / Largeur 17.0 cm
Épaisseur: 1.6 cm
Poids: 495 g