en savoir plus
Permet à tous ses détenteurs d'obtenir 5% de réduction sur tous les livres lors du retrait en magasin (réduction non cumulable avec les réductions de type étudiant).
Offre également un certain nombre d'avantages auprès de nos partenaires.
Avec les favoris, retrouvez dans un espace les sélections effectuées au fur et à mesure de vos navigations dans le site.
Constituez pour votre usage personnel vos listes de livres en prévisions d'achats futurs et votre sélection d'articles, dossiers, événements, vidéos ou podcasts préférés ou à découvrir plus tard...
Il suffit simplement de cliquer sur "Ajout Favori" sur chaque page qui vous intéresse pour les retrouver ensuite dans votre espace personnel.
Requiert un compte Mollat
Requiert un compte Mollat
Ce cours de topologie différentielle présente la topologie générale et le calcul différentiel dans Rn. Il étudie les objets de base attachés au concept de variété différentiable. Le but du cours est d'introduire la théorie de Morse, la formule de Stokes, le calcul dit de Lie-Cartan, la dualité de Poincaré, les courants de de Rham, les théorèmes de transversalité de Thom, etc. ©Electre 2025
Ce cours de Topologie Différentielle s'adresse à des étudiants en Master de mathématiques. Il suppose bien connus la topologie générale et le calcul différentiel dans Rn. Il étudie les objets de base attachés au concept de variété différentiable.
Les trois premiers chapitres donnent une présentation classique et rapide des variétés et de leurs espaces tangents. Les formes différentielles et les champs de vecteurs sont introduits en insistant sur les formules de changement de coordonnées. La formule de Stokes en découle aisément. Le calcul dit de Lie-Cartan relie les formes différentielles et les champs de vecteurs. La cohomologie des formes différentielles est mise en place mais, dans un premier temps, seule la cohomologie en degré maximal est complétement étudiée.
Le but du cours est d'introduire la théorie de Morse et de montrer qu'avec une fonction de Morse f sur une variété M, munie d'un gradient adapté, on peut obtenir des résultats forts de topologie algébrique, tels que le calcul de la cohomologie de M et la dualité de Poincaré. Les courants de De Rham, ou formes différentielles à coefficients distributions, offrent un bon outil pour atteindre le but fixé. Le fait nouveau utilisé dans ce cours est que les variétés stables des points critiques de f pour le gradient sont des courants malgré leur complexité a priori comme sous-variétés ouvertes de M. Les théorèmes de transversalité de Thom, qui font l'objet d'un chapitre, ont de nombreuses applications en topologie différentielle, en particulier en théorie des singularités. Ils donnent la densité des fonctions de Morse, mais surtout l'existence de champs de gradient Morse-Smale, qui justement permettent la construction du fameux complexe de rang fini, aujourd'hui appelé complexe de Morse, lequel calcule la cohomologie de M.
Paru le : 01/11/2011
Thématique : Mathématiques 1er Cycle
Auteur(s) : Auteur : François Laudenbach
Éditeur(s) :
Ecole polytechnique
Collection(s) : Mathématiques
Contributeur(s) : Auteur : François Labourie
Série(s) : Non précisé.
ISBN : 978-2-7302-1585-5
EAN13 : 9782730215855
Reliure : Broché
Pages : X-182
Hauteur: 24.0 cm / Largeur 17.0 cm
Épaisseur: 1.2 cm
Poids: 354 g